Identifying the Time of Step Change in the Mean of Autocorrelated Processes
نویسندگان
چکیده
Control charts are used to detect changes in a process. Once a change is detected, knowledge of the change point would simplify the search for and identification of the special cause. Consequently, having an estimate of the process change point following a control chart signal would be useful to process analysts. Change point methods for the uncorrelated process have been studied extensively in the literature; however, less attention has been given to change point methods for autocorrelated processes. Autocorrelation is common in practice and is often modeled via the class of autoregressive-moving average (ARMA) models. In this paper, a maximum likelihood estimator for the time of step change in the mean of covariance-stationary processes that fall within the general ARMA framework is developed. The estimator is intended to be used as an “add-on” following a signal from a phase II control chart. Considering first-order pure and mixed ARMA processes, Monte Carlo simulation is used to evaluate the performance of the proposed change point estimator across a range of step change magnitudes following a genuine signal from a control chart. Results indicate that the estimator provides process analysts with an accurate and useful estimate of the last sample obtained from the unchanged process. Additionally, results indicate that if a change point estimator designed for the uncorrelated process is applied to an autocorrelated process, the performance of the estimator can suffer dramatically.
منابع مشابه
Drift Change Point Estimation in the rate and dependence Parameters of Autocorrelated Poisson Count Processes Using MLE Approach: An Application to IP Counts Data
Change point estimation in the area of statistical process control has received considerable attentions in the recent decades because it helps process engineer to identify and remove assignable causes as quickly as possible. On the other hand, improving in measurement systems and data storage, lead to taking observations very close to each other in time and as a result increasing autocorrelatio...
متن کاملIdentifying the change time of multivariate binomial processes for step changes and drifts
In this paper, a new control chart to monitor multi-binomial processes is first proposed based on a transformation method. Then, the maximum likelihood estimators of change points designed for both step changes and linear-trend disturbances are derived. At the end, the performances of the proposed change-point estimators are evaluated and are compared using some Monte Carlo simulation experimen...
متن کاملIsotonic Change Point Estimation in the AR(1) Autocorrelated Simple Linear Profiles
Sometimes the relationship between dependent and explanatory variable(s) known as profile is monitored. Simple linear profiles among the other types of profiles have been more considered due to their applications especially in calibration. There are some studies on the monitoring them when the observations within each profile are autocorrelated. On the other hand, estimating the change point le...
متن کاملA Novel Clustering Approach for Estimating the Time of Step Changes in Shewhart Control Charts
Although control charts are very common to monitoring process changes, they usually do not indicate the real time of the changes. Identifying the real time of the process changes is known as change-point estimation problem. There are a number of change point models in the literature however most of the existing approaches are dedicated to normal processes. In this paper we propose a novel app...
متن کاملChange Point Estimation in High Yield Processes in the Presence of Serial Correlation
Change point estimation is as an effective method for identifying the time of a change in production and service processes. In most of the statistical quality control literature, it is usually assumed that the quality characteristic of interest is independently and identically distributed over time. It is obvious that this assumption could be easily violated in practice. In this paper, we use m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008